

Mark Scheme (Results)

October 2021

Pearson Edexcel International A Level In Further Pure Mathematics F2 (WFM02) Paper 01

WFM02 Further Pure Mathematics F2 Mark Scheme

Question Number	Scheme	Notes	Marks
1	$z^5 - 32i = 0 \Rightarrow r^5 = 32 \Rightarrow r = 2$	Correct value for <i>r</i> . May be shown explicitly or used correctly.	B1
	$5\theta = \frac{\pi}{2} + 2n\pi \Rightarrow \theta = \frac{\pi}{10} + \frac{2n\pi}{5}$	Applies a correct strategy for establishing at least 2 values of θ . This can be awarded if if the initial angle $\left(\frac{\pi}{2} \text{ or } \frac{\pi}{10}\right)$ is incorrect but otherwise their strategy is correct.	M1
	$z = 2e^{i\frac{\pi}{10}}, \ 2e^{i\frac{\pi}{2}}, \ 2e^{i\frac{9\pi}{10}}, \ 2e^{i\frac{13\pi}{10}}, \ 2e^{i\frac{17\pi}{10}}$ or	At least 2 correct, follow through their r	A1ft
	$z = 2e^{\left(\frac{\pi}{10} + \frac{2n\pi}{5}\right)i}, n = 0, 1, 2, 3, 4$	All correct. Must have $r = 2$	A1
			(4)
			Total 4

Question Number	Scheme	Notes	Marks	
2	$\frac{x}{2-x}$, $\frac{x+3}{x}$			
Way 1				
	$\frac{x}{2-x} - \frac{x+3}{x}, 0 \Rightarrow \frac{x^2 - (2-x)(x+3)}{x(2-x)}, 0$ M1: Attempt common denominator A1: Correct fraction		M1 A1	
	x = 0, 2	These critical values	B1	
	$x^{2} - (2 - x)(x + 3) = 0$ $\Rightarrow 2x^{2} + x - 6 = 0 \Rightarrow x = \dots$	Solves the 3TQ in the numerator	M1	
	$\Rightarrow 2x^2 + x - 6 = 0 \Rightarrow x = \dots$ $x = \frac{3}{2}, -2$	These critical values	A1	
	x , -2 , $0 < x$, $\frac{3}{2}$, $x > 2$ A1: Any 2 of these with strict inequalities allowed A1: All correct with inequalities as shown. Ignore what they have between their inequalities e.g. allow "or", "and", "," etc. but not \cap			
			A1A1	
			(8)	
			Total 8	
	Alternative 1	$:\times x^2 (2-x)^2$		
	$x^{3}(2-x)$, $x(x+3)(2-x)^{2}$	Multiplies by a positive expression	M1	
	$x^{3}(2-x) - x(x+3)(2-x)^{2}$, 0	Collects to one side	M1	
	$\frac{x(2-x)^{2} + x(x+3)(2-x)^{2}}{x=0, 2}$	Correct inequality	A1	
	$x(2-x)[x^{2} - (x+3)(2-x)] = 0$ $x^{2} - (x+3)(2-x) = 0$	Attempts to factorise by taking out a factor of $x(2-x)$ and solves resulting 3TQ. May have quartic and apply the factor theorem.	B1 M1	
	$\Rightarrow 2x^2 + x - 6 = 0 \Rightarrow x = \dots$ $x = \frac{3}{2}, -2$	These critical values	A1	
	$x_{,,} -2, 0 <$	$x = \frac{3}{2}, x > 2$		
	A1: Any 2 of these with A1: All correct with Ignore what they have be	strict inequalities allowed inequalities as shown. between their inequalities d'', "," etc. but not \(\chi \)	A1A1	

Question Number	Scheme	Notes	Marks
3	$w = \frac{(2+i)z+4}{z-i} \Rightarrow wz - wi = (2+i)z+4$ $\Rightarrow z = \dots$	Attempts to make z the subject	M1
	$z = \frac{wi + 4}{w - 2 - i}$	Correct equation in any form	A1
	$z = \frac{(u+iv)i+4}{u+iv-2-i}$ $z = \frac{((u+iv)i+4)(u-2-(v-1)i)}{(u-2+(v-1)i)(u-2-(v-1)i)}$	Introduces $w = u + iv$ and multiplies numerator and denominator by the conjugate of the denominator	M1
	u(v-1)+(4-v)(u-2)=0	Sets real part = 0 (with or without denominator) Depends on both M marks above	dM1
		Any correct equation	A1
	3u + 2v - 8 = 0	Correct equation in the required form (allow any integer multiple)	A1
			(6)
Way 2	$w = \frac{(2+i)z+4}{z-i}, z = yi \Rightarrow w = \frac{(2+i)yi+4}{yi-i}$ $w = \frac{(2+i)yi+4}{yi-i} \times \frac{i}{i}$	Solves simultaneously and multiplies numerator and denominator by i	M1
	$w = \frac{(2+i)yi + 4}{yi - i} \times \frac{i}{i}$ $u = \frac{2y}{y - 1}, v = \frac{y - 4}{y - 1}$ $u = \frac{2y}{y - 1} \Rightarrow y = \frac{u}{u - 2}$	Correct real and imaginary parts	A1
	$u = \frac{2y}{y-1} \Rightarrow y = \frac{u}{u-2}$	Attempts y in terms of u or v	M1
	$u - \Delta$	Obtains an equation connecting u and v	M1
	$y = \frac{u}{u - 2} \Rightarrow v = \frac{u - 2}{\frac{u}{u - 2} - 1}$	Any correct equation	A1
	3u + 2v - 8 = 0	Correct equation in the required form (allow any integer multiple)	A1
			(6)
Way 3	Apply the transformation to any point on the imaginary axis	Eg $(0,0) \to (0,4) (0,1) \to (4,-2)$	M1
	Apply the transformation to a second point on the imaginary axis	This is the second M mark on e-PEN	M1
	Both transformations correct	This is the first A mark on e-PEN	A1
	Complete method to obtain an equation for the line thro' their 2 points in the <i>w</i> -plane		M1
	Correct equation in any form		A1
	3u + 2v - 8 = 0	Correct equation in the required form (allow any integer multiple)	A1
			Total 6

Question Number	Scheme	Notes	Marks
4(a)	$\left(x+1\right)\frac{\mathrm{d}y}{\mathrm{d}x} - xy = \mathrm{e}^3$	x > -1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{xy}{(x+1)} = \frac{\mathrm{e}^{3x}}{(x+1)}$	Correctly rearranged equation	B1
	$I = e^{\int \frac{-x}{x+1} dx} = e^{\int \left(-1 + \frac{1}{x+1}\right) dx}$	Correct strategy for the integrating factor including an attempt at the integration	M1
	$= e^{-x + \ln(x+1)}$	$For -x + \ln(x+1)$	A1
	$= (x+1)e^{-x}$	Correct integrating factor	A1
	$y(x+1)e^{-x} = \int \frac{e^{3x}}{x+1} \times (x+1)e^{-x} dx$	Uses their integrating factor to reach the form $yI = \int QI dx$	M1
	$y(x+1)e^{-x} = \frac{1}{2}e^{2x} + c$	Correct equation (with or without $+ c$)	A1
	$y(x+1)e^{-x} = \frac{1}{2}e^{2x} + c$ $y = \frac{e^{3x}}{2(x+1)} + \frac{ce^{x}}{(x+1)}$	Correct answer (allow equivalent forms). Must have $y =$	A1
			(7)
(b)	$x = 0, y = 5 \Rightarrow 5 = \frac{1}{2} + c \Rightarrow c = \frac{9}{2}$	Substitutes $x = 0$ and $y = 5$ and attempts to find a value for c .	M1
	$y = \frac{e^{3x}}{2(x+1)} + \frac{9e^x}{2(x+1)}$	Cao (oe) Must have $y =$	A1
			(2)
			Total 9

Question Number	Scheme	Notes	Marks
5(a)	$y = \tan^2 x \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 2\tan x \sec^2 x$	Correct first derivative any correct form	B1
	$\frac{dy}{dx} = 2 \tan x \sec^2 x \Rightarrow \frac{d^2 y}{dx^2} = 2$ M1: Correct application of the property A1: Correct exp	oduct rule and chain rule	M1A1
	$\frac{d^2y}{dx^2} = 2\sec^4 x + 4\sec^2 x \tan^2 x \Rightarrow \frac{d^3y}{dx^3} = 8\sec^4 x$ Or $\frac{d^2y}{dx^2} = 6\sec^4 x - 4\sec^2 x \Rightarrow \frac{d^3y}{dx^3} = 2$	$x \tan x + 8\sec^2 x \tan^3 x + 8\sec^4 x \tan x$	M1
	$\frac{dx^2}{dx^3} = 278e^x x \tan x + 88e^x x \tan x$ $\frac{dx^2}{dx^3} = 278e^x x \tan x + 88e^x x \tan x$ $\frac{dx^2}{dx^3} = 278e^x x \tan x + 88e^x x \tan x$ $\frac{dx^2}{dx^3} = 278e^x x \tan x + 88e^x x \tan x$		
	$= 24 \sec^4 x \tan x - 8 \sec^2 x \tan x =$ Fully correct ex	,	A1 (5)
(b)	$(y)_{\frac{\pi}{3}} = 3, (y')_{\frac{\pi}{3}} = 8\sqrt{3}, (y'')_{\frac{\pi}{3}} = 80, (y''')_{\frac{\pi}{3}} = 352\sqrt{3}$	Attempts the values up to the third derivative when $x = \frac{\pi}{3}$	M1
	$y = 3 + 8\sqrt{3}\left(x - \frac{\pi}{3}\right) + \frac{80}{2!}\left(x - \frac{\pi}{3}\right)$ Correct application of the Taylor	3. (3)	M1
	$y = 3 + 8\sqrt{3}\left(x - \frac{\pi}{3}\right) + 40\left(x - \frac{\pi}{3}\right)$ Correct expansion	$\int_{1}^{2} + \frac{176\sqrt{3}}{3} \left(x - \frac{\pi}{3} \right)^{3} + \dots$ nsion	A1
	Must start $y =$ or $tan^2x =$ $f(x)$ only accept	ted if $I(x)$ has been defined to be $\tan^2 x$	(3)
			Total 8

Question Number	Scheme	Notes	Marks
6(a)	$ z+1-13i =3 z-7-5i \Rightarrow (x+1)^2+($	(M1
	Correct application of Pythagoras Accept 3 or 9 on RHS		
	$\Rightarrow x^2 + y^2 - 16x - 8y + 62 = 0$	Correct equation in any form with terms collected	A1
	Centre (8, 4)	Correct centre. i included scores A0	A1
	$r^2 = 64 + 16 - 62 = \dots$	Correct method for r or r^2	M1
	$r = \sqrt{18}$ or $3\sqrt{2}$	Correct radius. Must be exact.	A1
			(5)
(b)	$\arg(z-8-6i) = -\frac{3\pi}{4} \Rightarrow y-6 = x-8$	Converts the given locus to the correct Cartesian form	B1
	$\Rightarrow x^{2} + y^{2} - 16x - 8y + 62 = 0$ $\Rightarrow x^{2} + (x - 2)^{2} - 16x - 8(x - 2) + 62 = 0 \Rightarrow x = \dots$ or $\Rightarrow (y + 2)^{2} + y^{2} - 16x - 8(y + 2) + 62 = 0 \Rightarrow y = \dots$	Uses both Cartesian equations to obtain an equation in one variable and attempts to solve	M1
	$x = 7 - 2\sqrt{2}$ or $y = 5 - 2\sqrt{2}$	One correct "coordinate"	A1
	R is $7 - 2\sqrt{2} + (5 - 2\sqrt{2})i$ or $x = 7 - 2\sqrt{2}$ and $y = 5 - 2\sqrt{2}$	Correct complex number or coordinates and no others. Must be exact	A1
			(4)
			Total 9

Question Number	Scheme	Notes	Marks
7(a)	$x = t^2 \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}y} = 2t \frac{\mathrm{d}t}{\mathrm{d}y}$ oe	Correct application of the chain rule	M1
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2t} \frac{\mathrm{d}y}{\mathrm{d}t} \left(\text{ or e.g. } \frac{1}{2\sqrt{x}} \frac{\mathrm{d}y}{\mathrm{d}t} \right)$	Any correct expression for $\frac{dy}{dx}$ or equivalent equation	A1
	$2\sqrt{x}\frac{dy}{dx} = \frac{dy}{dt} \Rightarrow x^{-\frac{1}{2}}\frac{dy}{dx} + 2\sqrt{x}\frac{d^{2}y}{dx^{2}} = \frac{d^{2}y}{dt^{2}}\frac{dt}{dx}$ $(NB\frac{d^{2}y}{dt^{2}} = 2\frac{dy}{dx} + 4x\frac{d^{2}y}{dx^{2}})$	Fully correct strategy to obtain an equation involving $\frac{d^2y}{dx^2}$ and $\frac{d^2y}{dt^2}$ Chain rule used on at least one term. Depends on the first M mark	dM1
	$4x\frac{d^2y}{dx^2} + 2\left(1 + 2\sqrt{x}\right)\frac{dy}{dx} - 15y = 15x \Rightarrow 4$ $\Rightarrow \frac{d^2y}{dt^2} + 2\frac{dy}{dt} - 1$	ar ar	113.61 . 1.4
	$ {dt^2} + 2{dt} - 1 $ ddM1: Substitutes into the given differential equal Depends on both A1*: Cs	uation. The full substitution must be seen. M marks.	ddM1 A1*
			(5)
(b)	$m^2 + 2m - 15 = 0 \Rightarrow m = 3, -5$	Attempts to solve $m^2 + 2m - 15 = 0$	M1
	$y = Ae^{-5t} + Be^{3t}$	Correct CF	A1
	$y = at^{2} + bt + c \Rightarrow \frac{dy}{dt} = 2$ $\Rightarrow 2a + 4at + 2b - 15at^{2}$ Starts with the correct PI form and dif	$-15bt - 15c = 15t^2$	M1
	$-15a = 15 \Rightarrow a = \dots$ $4a - 15b = 0 \Rightarrow b = \dots$ $2a + 2b - 15c = 0 \Rightarrow c = \dots$	Complete method to find <i>a</i> , <i>b</i> and <i>c</i> by comparing coefficients. Values for all 3 needed. Depends on the second M mark.	dM1
	$y = Ae^{-5t} + Be^{3t} - t^2 - \frac{4}{15}t - \frac{38}{225}$	Correct GS. Must start $y =$	A1
(a)	4 20		(5)
(c)	$y = Ae^{-5\sqrt{x}} + Be^{3\sqrt{x}} - x - \frac{4}{15}\sqrt{x} - \frac{38}{225}$	Correct equation (follow through their answer to (b)) Must start $y =$	B1ft
			(1)
			Total 11

Question Number	Scheme	Notes	Marks
8(a)	$x = r\cos\theta = (1 + \sin\theta)\cos\theta$ $\Rightarrow \frac{dx}{d\theta} = \cos^2\theta - (1 + \sin\theta)\sin\theta$	Differentiates $r\cos\theta$ using product rule or double angle formula	M1
	or $\Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = -\sin\theta + \cos 2\theta$	Correct derivative in any form	A1
	$\cos^2\theta - (1+\sin\theta)\sin\theta = 0 \Rightarrow 1-\sin^2\theta - \sin\theta$	$\theta - \sin^2 \theta = 0 \Rightarrow 2\sin^2 \theta + \sin \theta - 1 = 0$	
	or $-\sin\theta + \cos 2\theta = 0 \Rightarrow -\sin\theta + 1 - 2\sin^2\theta$ dx		dM1
	Sets $\frac{dx}{d\theta} = 0$ and proceeds		
	Depends on the first $\Rightarrow 2\sin^2\theta + \sin\theta - 1 = 0$	st ivi mark	
	$\Rightarrow \sin \theta = \frac{1}{2}, (-1) \Rightarrow \theta = \dots$	Solves for θ . Depends o both M marks above.	ddM1
	$\left(\frac{3}{2},\frac{\pi}{6}\right)$	Correct coordinates and no others. Need not be in coordinate brackets.	A1
(I.)			(5)
(b)	$\int (1+\sin\theta)^2 d\theta = \int (1+2\sin\theta+\sin^2\theta) d\theta$ $= \int \left(1+2\sin\theta+\frac{1}{2}-\frac{1}{2}\cos 2\theta\right) d\theta$	Attempts $\left(\frac{1}{2}\right) \int r^2 d\theta$ and applies $\sin^2 \theta = \pm \frac{1}{2} \pm \frac{1}{2} \cos 2\theta$ Ignore any	M1
	$= \int \left(1 + 2\sin\theta + \frac{1}{2} - \frac{\cos 2\theta}{2}\right) d\theta$	2 2 limits shown	
	$\int (1+\sin\theta)^2 d\theta = \frac{3}{2}\theta - 2\cos\theta - \frac{1}{4}\sin 2\theta (+c)$	Correct integration (Ignore limits)	A1
	$\frac{1}{2} \left[\frac{3}{2} \theta - 2 \cos \theta - \frac{1}{4} \sin 2\theta \right]_{\frac{\pi}{6}}^{\frac{\pi}{2}}$	Applies the limits of $\frac{\pi}{2}$ and their $\frac{\pi}{6}$ Substitution must be shown but no	M1
	$= \frac{1}{2} \left[\frac{3\pi}{4} - \left(\frac{\pi}{4} - \sqrt{3} - \frac{\sqrt{3}}{8} \right) \right] \left(= \frac{\pi}{4} + \frac{9\sqrt{3}}{16} \right)$	simplification needed	
	Trapezium: $ \frac{1}{2} \left(2 + \left(2 - \frac{3}{2} \sin \frac{\pi}{6} \right) \right) \times \frac{3}{2} \cos \frac{\pi}{6} $ $ \left(= \frac{39\sqrt{3}}{32} \right) $	Uses a correct strategy for the area of trapezium <i>OQSP</i>	M1
	Area of $R = \frac{39\sqrt{3}}{32} - \frac{\pi}{4} - \frac{9\sqrt{3}}{16}$	Fully correct method for the required area. Depends on all previous method marks.	dM1
	$\frac{1}{32}\left(21\sqrt{3}-8\pi\right)$	Cao	A1
		,	(6)

Total 11

Question Number	Scheme	Notes	Marks
9(a)	$n^{5} - (n-1)^{5} = n^{5} - (n^{5} - 5n^{4} + 10n^{3} - 10n^{2} + 5n - 1) = \dots$ Starts the proof by expanding the bracket		M1
	$5n^4 - 10n^3 + 10n^2 - 5n + 1*$	Correct proof with no errors. Full expansion of $(n-1)^5$ must be shown.	A1*
			(2)
(b)	$1^5 - 0^5 = 5(1)^4 - 10(1)^3 + 10(1)^2 - 5(1) + 1$		
	$2^5 - 1^5 = 5(2)^4 - 10(1)$	$(2)^3 + 10(2)^2 - 5(2) + 1$	
	$(n-1)^{5} - (n-2)^{5} = 5(n-1)^{4} - 10^{6}$	$0(n-1)^{3}+10(n-1)^{2}-5(n-1)+1$	
	$(n)^5 - (n-1)^5 = 5(n)^4 -$	$10(n)^3 + 10(n)^2 - 5(n) + 1$	M1A1
	$n^{5} = 5\sum_{r=1}^{n} r^{4} - 10\sum_{r=1}^{n} r^{3} + 10\sum_{r=1}^{n} r^{2} - 5\sum_{r=1}^{n} r + n$		
		between 1 and n and sums both sides	
	Min 3 lines shown A1: Correct equation If only the last line is seen, award M1A1 These marks can be implied by a correct following stage.		
	$n^{5} = 5\sum_{r=1}^{n} r^{4} - 10 \times \frac{1}{4} n^{2} (n+1)^{2} + 10 \times \frac{1}{6} n(n+1)(2n+1) - 5 \times \frac{1}{2} n(n+1) + n$		M1A1
	M1: Introduces at least 2 correct summation formulae A1: Correct equation		WITT
	$5\sum_{r=1}^{n} r^{4} = \frac{5}{2}n^{2}(n+1)^{2} - \frac{5}{3}n(n+1)(2n+1) + \frac{5}{2}n(n+1) + n^{5} - n = \dots$		
	$5\sum_{r=1}^{n} r^{4} = n(n+1)\left[\frac{5}{2}n(n+1) - \frac{5}{3}(2n+1) + \frac{5}{2} + n^{3} - n^{2} + n - 1\right]$		M1
	Makes $5\sum_{r=1}^{n} r^4$ or $\sum_{r=1}^{n} r^4$ the subject and takes out a factor of $n(n+1)$		
	$\sum_{r=1}^{n} r^4 = \frac{1}{30} n(n+1) \Big[15n(n+1) - 10(2n+1) + 15 + 6(n^3 - n^2 + n - 1) \Big]$		
	$= \frac{1}{30}n(n+1)\left[6n^3 + 9n^2 + n - 1\right] = \frac{1}{30}n(n+1)(2n+1)()$		dM1
	Takes out a factor of $n(n+1)(2n+1)$ Depends on all previous method marks		
	$= \frac{1}{30} n(n+1)(2n+1)(3n^2+3n-1)$	cao	A1
			(7)
			Total 9